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Abstract
This paper presents a method for enumerating all encoding operators in the
Clifford group for a given stabilizer. Furthermore, we classify encoding
operators into the equivalence classes such that EDPs (entanglement distillation
protocols) constructed from encoding operators in the same equivalence class
have the same performance. By this classification, for a given parameter, the
number of candidates for good EDPs is significantly reduced. As a result, we
find the best EDP among EDPs constructed from [[4, 2]] stabilizer codes. This
EDP has a better performance than previously known EDPs over a wide range
of fidelity.

PACS numbers: 03.67.Mn, 03.67.Pp

1. Introduction

In various methods in quantum communication, we have to share a maximally entangled state.
Bennett et al [3] proposed the entanglement distillation protocol (EDP), which is a scheme for
sharing a maximally entangled state by spatially separated two parties with local operations
and classical communication. Classical communication in EDPs can be either one way or two
way, and two-way EDPs can distil more entanglement than one-way EDPs.

In [1, 15, 16, 20], the stabilizer-based EDP is proposed, which is constructed from the
quantum stabilizer code, and is the generalization of the CSS code based EDP [25]. By using
an [[n, k]] stabilizer code, we can construct EDPs that distil k Bell states from n Bell states.
The recurrence protocol [4] and the QPA protocol [9] are special cases of stabilizer-based
EDPs, which are constructed from [[2, 1]] stabilizer codes [20, section 4].

By now, we arbitrarily choose one of many encoding operators with a stabilizer-based EDP.
However, in construction of EDPs from quantum stabilizers, choice of encoding operators for
stabilizer codes make large differences in performance of constructed EDPs. Even though there
exist infinitely many encoding operators for a given quantum stabilizer, we cannot implement
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all encoding operators efficiently. The reason is as follows. Any unitary operator can be
approximated by using only elementary operators, the Hadamard operator, the phase operator,
the controlled not operator and the π

8 operator. However in general, most unitary operators
require exponentially many elementary operators to be approximated in high accuracy [21,
section 4.5].

The Clifford group is the set of unitary operators generated by the Hadamard operator,
the phase operator and the controlled not operator. In particular, each element in the Clifford
group that acts on n qubits is a product of at most O(n2) generators [11, 12, 14]. Thus, for
a given stabilizer, encoding operators in the Clifford group are efficiently implementable. It
is also known that quantum computation by operators in the Clifford group can be efficiently
simulated on a classical computer (Gottesman–Knill theorem) [13].

There is another method to construct two-way EDPs, which is the permutation-based EDP
[7]. Permutation-based EDPs utilize local operations chosen from the Clifford group, and it
is known that choices of local operations make difference in performances of permutation-
based EDPs. When encoding operators of stabilizer-based EDPs are restricted to operators
in the Clifford group, the classes of stabilizer-based EDPs and permutation-based EDPs are
equivalent [18]. Elements of the Clifford group are described in terms of symplectic geometry,
which enable us to enumerate all local operations for permutation-based EDPs [8, 17].

In this paper, we construct a method for enumerating all encoding operators in the Clifford
group for a given stabilizer. Furthermore, we classify encoding operators into the equivalence
classes such that EDPs constructed from encoding operators in the same equivalence class
have the same performance. Such a classification has not been considered for either the
stabilizer-based EDP or the permutation-based EDP until now. By this classification, for
given parameters, the number of candidates for good EDPs is significantly reduced. For
example, in the case of EDPs constructed from the [[4, 2]] stabilizer code, the number of
candidates is reduced by 1/12288. It took one week to find the best EDP among EDPs
constructed from the [[4, 2]] stabilizer code with computer search, so we would have needed
about 200 years to find the best EDP without our result.

As a result, we find the best EDP over wide range of fidelity among EDPs constructed
from the [[4, 2]] stabilizer code. This EDP has a better performance than previously known
EDPs over wide range of fidelity.

This paper is organized as follows. In section 2, we review the stabilizer code and the
stabilizer-based EDP. In section 3, we show our main theorems. In section 4, we show the
best EDP found by using our main theorems.

2. Preliminaries

In this section, we review the stabilizer code, the encoding operator of the stabilizer code, the
construction of entanglement distillation protocols (EDPs) from stabilizer codes and previously
known results about two-way EDPs and the Clifford group. To make our argument general,
we use the p-dimensional Hilbert space (qudit) instead of the two-dimensional space (qubit).

2.1. Stabilizer code

In this section, we review the non-binary generalization [19, 23] of the stabilizer code
[5, 6, 10].

Let H be the p-dimensional complex linear spaces with an orthonormal basis {|0〉, . . . ,
|p − 1〉}, where p is a prime number. We define two matrices X and Z by

X|i〉 = |i + 1 mod p〉, Z|i〉 = ωi |i〉



Improvement of stabilizer-based entanglement distillation protocols by encoding operators 4275

with a complex primitive pth root ω of 1. The matrices X and Z have the following relation:

ZX = ωXZ. (1)

Let Zp = {0, . . . , p − 1} with addition and multiplication taken modulo p, and Zn
p be the

n-dimensional vector space over Zp. For a vector �a = (a1, . . . , an | b1, . . . , bn) ∈ Z2n
p , let

XZn(�a) = Xa1Zb1 ⊗ · · · ⊗ XanZbn .

Note that eigenvalues of Xai Zbi are powers of ω for p � 3, and {±1,±i} for p = 2, where i
is the imaginary unit. For a vector �c = (c1, . . . , cn) ∈ Zn

p, we denote

|�c〉 = |c1〉 ⊗ · · · ⊗ |cn〉.

Definition 1. Let

Pn = {
ωiXZn(�a)

∣∣ i ∈ Zp, �a ∈ Z2n
p

}
(2)

for p � 3, and

Pn = {
µXZn(�a)

∣∣ µ ∈ {±1,±i}, �a ∈ Z2n
p

}
for p = 2, and let S be a commutative subgroup of Pn. The group Pn is called the Pauli group
and the subgroup S is called a stabilizer.

Suppose that {XZn(�ξ1), . . . , XZn(�ξn−k) (and possibly some power of ωIpn for p � 3 and
some power of iIpn for p = 2) } is a generating set of the group S, where �ξ1, . . . , �ξn−k are
linearly independent over Zp. From now, we fix a generating set of S as �ξ1, . . . , �ξn−k .

A stabilizer code Q is a joint eigenspace of S in H⊗n. There are many joint eigenspaces
of S and we can distinguish an eigenspace by its eigenvalue of XZn(�ξi) for i = 1, . . . , n − k.
Hereafter we fix a joint eigenspace Q(�0) of S and suppose that Q(�0) belongs to the eigenvalue
λi of XZn(�ξi) for i = 1, . . . , n−k. Note that λi ∈ {ωa | a ∈ Zp} for p � 3, and λi ∈ {±1,±i}
for p = 2. For a vector �x = (x1, . . . , xn−k) ∈ Zn−k

p , we denote Q(�x) as a joint eigenspace

that belongs to the eigenvalue λiω
xi of XZn(�ξi) for i = 1, . . . , n − k.

Definition 2. For two vectors �x = (a1, . . . , an | b1, . . . , bn) and �y = (c1, . . . , cn | d1, . . . , dn),
the symplectic inner product is defined by

〈�x, �y〉 =
n∑

i=1

bici − aidi .

Definition 3. The linear space Z2n
p with symplectic inner product defined in definition 2 is

called the symplectic space.

Suppose that we sent |ϕ〉 ∈ Q(�0), and received XZn(�e)|ϕ〉. We can tell which eigenspace
of S contains the state XZn(�e)|ϕ〉 by measuring an observable whose eigenspaces are the same
as those of XZn(�ξi). Then the measurement outcome always indicates that the measured state
XZn(�e)|ϕ〉 belonging to the eigenspace that belongs to eigenvalue λiω

〈�ξi ,�e〉.
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2.2. Encoding operator

In this section, we review encoding operators of stabilizer codes. An encoding operator of a
stabilizer code is a unitary matrix that maps the canonical basis of H⊗n to joint eigenvectors
of a stabilizer S.

Definition 4. Let Hn(�e) be the subspace of H⊗n such that Hn(�e) is spanned by{|�e〉 ⊗ |�x〉 ∣∣ �x ∈ Zk
p

}
,

where �e = (e1, . . . , en−k) ∈ Zn−k
p .

Let
{|ϑ(�e, �x)〉 ∣∣ �x ∈ Zk

p

}
be an orthonormal basis of Q(�e).

Definition 5. An encoding operator U of a stabilizer code is a unitary operator on H⊗n that
maps an orthonormal basis of H(�e) to an orthonormal basis of Q(�e) for all �e ∈ Zn−k

p , i.e.,

U : H(�e) � |�e〉 ⊗ |�x〉 �→ |ϑ(�e, �x)〉 ∈ Q(�e)
for �e ∈ Zn−k

p and �x ∈ Zk
p.

Note that a state
∑

�x∈Zk
p
α�x | �x〉 of H⊗k is encoded into∑

�x∈Zk
p

α�x |ϑ(�e, �x)〉

by U with ancilla qudits |e〉.

2.3. stabilizer-based EDP

In this section, we review the stabilizer-based EDP. We define the following maximally
entangled states in H⊗n

A ⊗ H⊗n
B by

|βn(�v)〉 = Ipn ⊗ XZn(�v)
1√
pn

pn−1∑
i=0

|iA〉 ⊗ |iB〉,

where �v ∈ Z2n
p .

Suppose that Alice and Bob share a mixed state ρ ∈ S
(
H⊗n

A ⊗H⊗n
B

)
, whereS

(
H⊗n

A ⊗H⊗n
B

)
is the set of density operators on H⊗n

A ⊗H⊗n
B . The goal of an entanglement distillation protocol

is to extract as many pairs of particles with state close to |β1(�0)〉 as possible from n pairs of
particles in the state ρ, where

|β1(�0)〉 = 1√
p

p−1∑
i=0

|iA〉 ⊗ |iB〉.

For �ξi = (a1, . . . , an | b1, . . . , bn), we define �ξ

i = (a1,−b1, . . . , an,−bn). Since the

complex conjugate of ω is ω−1, we can see that XZn(�ξ

i ) is the component-wise complex

conjugated matrix of XZn(�ξi). Let S
 be the subgroup of Pn generated by {XZn(�ξ

1 ), . . . ,

XZn(�ξ

n−k)}. Easy computation shows that S
 is again commutative. So we can consider joint

eigenspaces of S
. There exists a joint eigenspace Q
(�x) of S
 whose eigenvalue of XZn(�ξ

i )

is λ̄iω
−xi , where λ̄i is the complex conjugate of λi . For a state

|ϕ〉 = α0|0〉 + · · · + αpn−1|pn − 1〉 ∈ H⊗n,

we define

|ϕ〉 = ᾱ0|0〉 + · · · + ᾱpn−1|pn − 1〉,
where ᾱi is the complex conjugate of αi .
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With those notation, our protocol is executed as follows.

(i) Alice measures an observable corresponding to XZn(�ξ

i ) for each i, and let λ̄iω

−ai be the
eigenvalue of an eigenspace of S
 containing the state after measurement. In what follows
we refer to (a1, . . . , an−k) ∈ Zn−k

p as a measurement outcome.

(ii) Bob measures an observable corresponding to XZn(�ξi) for each i, and let λiω
bi be the

eigenvalue of an eigenspace of S containing the state after measurement. In what follows
we also refer to (b1, . . . , bn−k) ∈ Zn−k

p as a measurement outcome.
(iii) Alice sends (a1, . . . , an−k) to Bob.
(iv) If the difference of measurement outcomes (b1−a1, . . . , bn−k−an−k) /∈ T for a previously

specified set T ⊂ Zn−k
p , then they abort the protocol.

(v) Bob performs the error correction process according to a1, . . . , an−k as follows: Bob
finds a matrix M ∈ Pn such that MQ(�b) = Q(�a). There are many matrices M with
MQ(�b) = Q(�a), and Bob chooses M providing the highest fidelity among those matrices.
See [20] for details. He applies M to his particles.

(vi) Alice and Bob apply the inverse of encoding operators U
∗

and U ∗ of the quantum stabilizer
codes respectively, where U ∗ is the adjoint operator of the encoding operator U and U

∗
is

the component-wise complex conjugate operator of U ∗. We stress that Alice applies U
∗

instead of U ∗ [16, 20].
(vii) Alice and Bob discard n − k ancilla qudits.

Note that, when we start with the state |βn(�u)〉, the state becomes

(Ipn ⊗ XZn(�u))
∑
�x∈Zk

p

|ϑ(�a, �x)〉 ⊗ |ϑ(�a, �x)〉 (3)

after step (i) [20, proof of lemma 1].

2.4. Clifford group

Definition 6. Let Un be the set of all unitary operators on H⊗n, and N(Pn) be the normalizer
of Pn in Un, i.e.,

N(Pn) = {U | U ∈ Un, UMU ∗ ∈ Pn∀M ∈ Pn},
which is called the Clifford group, where U ∗ is the adjoint operator of U.

The unitary operators in the Clifford group N(Pn) are decomposed into products of the
elementary operators, where elementary operators for p = 2 are the Hadamard operator, the
phase operator and the controlled not operator [11, 14], and the elementary operators for p > 2
are the p-dimensional discrete Fourier transform operator, the sum operator, the p-dimensional
phase operator and the S operator [12]. The required number of the elementary operators to
represent an operator in the Clifford group is at most O(n2).

3. Construction of encoding operators

In this section, we present a method to enumerate all encoding operators in the Clifford group
for a given stabilizer (definitions 10 and 11). Then, we show relations between Bell states
and encoded Bell states (lemma 5, corollary 2, and corollary 3). Then, we classify encoding
operators into equivalence classes such that EDPs constructed from encoding operators in the
same equivalence class have the same performances (definition 13, theorems 3 and 4). Finally,
we show the method to enumerate all equivalence classes (theorem 5).



4278 S Watanabe et al

3.1. Construction method

For a given stabilizer S, we define M(S) as the set of all encoding operators, which maps the
subspace H(�e) to the subspace Q(�e) for all �e ∈ Zn−k

p (see definition 5).

Definition 7. Let Mcl(S) be the subset of M(S) defined by

Mcl(S) = M(S) ∩ N(Pn).

Mcl(S) is the set of all encoding operators that are contained in the Clifford group. The
goal of this section is to present a method for enumerating all elements of Mcl(S). Although
the method for enumerating all elements of the Clifford group is known [8, 17], the method
for enumerating all elements of Mcl(S) for a given stabilizer S is not known.

Definition 8. Let {�x1, . . . , �xn, �y1, . . . , �yn} be a basis of a symplectic space Z2n
p . If �xi and �yi

satisfy

〈�xi, �yj 〉 = δij , 〈�xi, �xj 〉 = 0, 〈�yi, �yj 〉 = 0

for all i and j , then the basis {�x1, . . . , �xn, �y1, . . . , �yn} is called a hyperbolic basis.

Lemma 1. If �ξ1, . . . , �ξn−k are mutually orthogonal with respect to the symplectic inner
product, then there exists vectors �ξn−k+1, . . . , �ξn and �η1, . . . , �ηn such that

〈�ξi, �ηj 〉 = δij , 〈�ξi, �ξj 〉 = 0, 〈�ηi, �ηj 〉 = 0, (4)

i.e., {�ξ1, . . . , �ξn, �η1, . . . , �ηn} form a hyperbolic basis of Z2n
p .

Proof. The assertion of this lemma follows from a standard fact in symplectic geometry
[22, 2]. �

Lemma 2. Let C be the linear subspace of Z2n
p spanned by �ξ1, . . . , �ξn−k , and C⊥ be the

orthogonal space of C with respect to the symplectic inner product. Let Cmax be the linear
subspace of Z2n

p spanned by �ξ1, . . . , �ξn. Then,

Cmax = C⊥
max, C ⊆ Cmax ⊆ C⊥,

and C⊥ is spanned by �ξ1, . . . , �ξn, �ηn−k+1, . . . , �ηn.

Proof. The assertion of this lemma follows from the property of a hyperbolic basis. �

Definition 9. For p = 2, we define µ(�ξi), µ(�ηi) ∈ {±1,±i} for each XZn(�ξi), XZn(�ηi) as
follows, where i is the imaginary unit. For a vector �ξi = (a1, . . . , an | b1, . . . , bn), we define
m(�ξi) = |{i | ai = bi = 1}|, i.e., the number of XZ s in XZn(�ξi). We define µ(�ξi) as

µ(�ξj ) = im(�ξi ).

µ(�ηi) is defined in the same way.

For example, in case of n = 4 and XZ4(�ξj ) = X ⊗ XZ ⊗ XZ ⊗ XZ,µ(�ξj ) = −i. In
case of n = 3 and XZ3(�ξj ) = XZ ⊗ I2 ⊗ XZ,µ(�ξj ) = −1. We need µ(�ξj ) so that
(µ(�ξj )XZn(�ξj ))

2 = I2n . For p � 3, we do not need µ(�ξj ) and µ(�ηj ).

Definition 10. Let Smax be the subgroup of Pn generated by {XZn(�x) | �x ∈ Cmax}. Let Qmin(�0)

be the stabilizer code defined by Smax contained in Q(�0). We have dim Qmin(�0) = 1. Let
|ψ(�0)〉 ∈ Qmin(�0) be a state vector of unit norm.
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Let

X̃n( �f i) = θx( �f i)XZn(�ηi), (5)

Z̃n( �f i) = θz( �f i)XZn(�ξi) (6)

for p � 3, and

X̃n( �f i) = θx( �f i)µ(�ηi)XZn(�ηi), (7)

Z̃n( �f i) = θz( �f i)µ(�ξi)XZn(�ξi) (8)

for p = 2, where �f i is a vector such that the ith element is 1 and the other elements are 0, θx(·) is
an arbitrary power of ω, and we choose θz(·) so that Z̃n( �f i)|ψ(�0)〉 = |ψ(�0)〉for i = 1, . . . , n.

Let

X̃n(�u) =
n∏

i=1

(̃X( �f i))
ui (9)

Z̃n(�v) =
n∏

i=1

(̃Z( �f i))
vi (10)

for �u = (u1, . . . , un) ∈ Zn
p and �v = (v1, . . . , vn) ∈ Zn

p.
We define our encoding operator Ue by

Ue : Xn(�u)|�0〉 �→ X̃n(�u)|ψ(�0)〉, (11)

where Xn(�u) = Xu1 ⊗ · · · ⊗ Xun . We define Zn(�u) in a similar manner.

Remark 1. From lemma 3, we find that equations (9) and (10) are a generalization of encoded
Xn(�u) operator and encoded Zn(�v) operator defined in [14].

Remark 2. The construction of the encoding operator depends on the choice of �ξn−k+1, . . . , �ξn

and �η1, . . . , �ηn that satisfy equation (4), Qmin(�0) ⊂ Q(�0), and phase factors θx(·). An example
will be given in section 4.

Definition 11. For a given stabilizer S, we define Mg(S) as the set of encoding operators Ue

for all choices of �ξn−k+1, . . . , �ξn, �η1, . . . , �ηn,Qmin(�0) ⊂ Q(�0), and θx(·).
Mg(S) is the set of all encoding operators that are constructed by the method in definition 10.
Next, we show Mg(S) is equal to Mcl(S).

Lemma 3. For X̃n(�s), Z̃n(�t), Ue defined by equations (9), (10) and (11), we have

UeXn(�s)U ∗
e = X̃n(�s) ∈ Pn ∀�s ∈ Zn

p, (12)

UeZn(�t)U ∗
e = Z̃n(�t) ∈ Pn ∀�t ∈ Zn

p. (13)

Proof. For �u ∈ Zn
p, let |ϕ(�u)〉 = Ue|�u〉 = X̃n(�u)|ψ(�0)〉. For �s ∈ Zn

p, we have

UeX(�s)U ∗
e |ϕ(�u)〉 = UeXn(�s)|�u〉

= Ue|�u + �s〉
= X̃n(�u + �s)|ψ(�0)〉
= X̃n(�s)̃Xn(�u)|ψ(�0)〉
= X̃n(�s)|ϕ(�u)〉.
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Since
{|ϕ(�u)〉 | �u ∈ Zn

p

}
form an orthonormal basis of H⊗n, we have

UeXn(�s)U ∗
e = X̃n(�s) ∈ Pn ∀�s ∈ Zn

p.

Next, for �t ∈ Zn
p, we have

UeZn(�t)U ∗
e |ϕ(�u)〉 = UeZn(�t)|�u〉

= ω(�t,�u)Ue|�u〉
= ω(�t,�u)X̃n(�u)|ψ(�0)〉, (14)

where (·, ·) is the standard inner product. From the definition of Z̃n(�t), we have Z̃n(�t)|ψ(�0)〉 =
|ψ(�0)〉. Since �ξi and �ηj satisfy equation (4), we have

XZn(�ηi)XZn(�ξj ) = ω−1XZn(�ξj )XZn(�ηi),

XZn(�ξi)XZn(�ξj ) = XZn(�ξj )XZn(�ξi),

XZn(�ηi)XZn(�ηj ) = XZn(�ηj )XZn(�ηi),

and

X̃n(�u)̃Zn(�t) = ω−(�t,�u)̃Zn(�t )̃Xn(�u).

Since Z̃(�t)|ψ(�0)〉 = |ψ(�0)〉, equation (14) is equal to

ω(�t,�u)X̃n(�u)̃Zn(�t)|ψ(�0)〉 = ω(�t,�u)ω−(�t,�u)̃Zn(�t )̃Xn(�u)|ψ(�0)〉
= Z̃n(�t)|ϕ(�u)〉.

Thus, we have

UeZn(�t)U ∗
e = Z̃n(�t) ∈ Pn ∀�t ∈ Zn

p. �

Corollary 1. For any Ue ∈ Mg(S), we have Ue ∈ N(Pn).

Proof. Since {Xn(�s)} and {Zn(�t)} are the generator set of Pn for p � 3, and {Xn(�s)} and {Zn(�t)}
and iIpn are the generator set of Pn for p = 2, from lemma 3, we have Ue ∈ N(Pn). �

Lemma 4. For Uc ∈ Mcl(S), there exists Ue ∈ Mg(S) such that Uc = Ue.

Proof. We will construct Ue ∈ Mg(S) such that Ue = Uc. We set |ψ〉 by

|ψ〉 = Uc|�0〉,
and set �ξn−k+1, . . . , �ξn and θz(·) by

Z̃n( �f i) = θz( �f i)XZn(�ξi) for i = 1, . . . , n − k (15)

Z̃n( �f i) = θz( �f i)XZn(�ξi) = UcZn( �f i)U
∗
c for i = n − k + 1, . . . , n, (16)

for p � 3, and

Z̃n( �f j ) = θz( �f j )µ(�ξj )XZn(�ξj ) for j = 1, . . . , n − k, (17)

Z̃n( �f j ) = θz( �f j )µ(�ξj )XZ(�ξj ) = UcZn( �f j )U
∗
c for j = n − k + 1, . . . , n, (18)

for p = 2, where �f i is a vector such that the ith element is 1 and the other elements are 0. Note
that �ξn−k+1, . . . , �ξn are determined by Uc, while �ξ1, . . . , �ξn−k are fixed bases of C as we stated
in section 2. From definition 5, we have |ψ〉 ∈ Q(�0). For i = 1, . . . , n − k, we set θz( �f i) so
that Z̃n( �f i)|ψ〉 = |ψ〉. Specifically, since Q(�0) is an eigenspace that belongs to an eigenvalue
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λi of XZn(�ξi) for i = 1, . . . , n − k, we set θz( �f i) = λi for p � 3 and θz( �f i) = λiµ(�ξi) for
p = 2.

Set �η1, . . . , �ηn, and θx(·) by

X̃n( �f i) = θx( �f i)XZn(�ηi) = UcXn( �f i)U
∗
c for i = 1, . . . , n, (19)

for p � 3, and

X̃n( �f j ) = θx( �f j )µ(�ηj )XZ(�ηj ) = UcXn( �f j )U
∗
c for j = 1, . . . , n (20)

for p = 2. Then we have

X̃n(�u) =
n∏

i=1

(̃Xn( �f i))
ui = UcXn(�u)U ∗

c for �u ∈ Zn
p.

We also have

Uc|�u〉 = UcXn(�u)|�0〉
= UcXn(�u)U ∗

c Uc|�0〉
= X̃n(�u)|ψ〉.

Next, we show

Z̃n( �f i) = UcZn( �f i)U
∗
c for i = 1, . . . , n − k. (21)

Let �u = (e1, . . . , en−k, x1, . . . , xk) ∈ Zn
p, �e = (e1, . . . , en−k) and |ϕ(�u)〉 = Uc|�u〉. Then,

since |ϕ(�u)〉 ∈ Q(�e) and XZn(�ξi)|ϕ(�u)〉 = λiω
ei |ϕ(�u)〉, we have

Z̃n( �f i)|ϕ(�u)〉 = θz( �f i)XZn(�ξi)|ϕ(�u)〉
= ωei |ϕ(�u)〉
= ωei UcXn(�u)U ∗

c |ψ〉
= ωei UcXn(�u)U ∗

c UcZn( �f i)|�0〉
= ωei UcXn(�u)U ∗

c UcZn( �f i)U
∗
c |ψ〉

= ωei ω−ei UcZn( �f i)U
∗
c UcXn(�u)U ∗

c |ψ〉
= UcZn( �f i)U

∗
c |ϕ(�u)〉,

for i = 1, . . . , n−k. Since {|ϕ(�u)〉 | �u ∈ Zn
p} form an orthonormal basis ofH⊗n, equation (21)

is satisfied.
From equations (1), (15), (16), (19) and (21), we have

XZn(�ξi)XZn(�ξj ) = XZn(�ξj )XZn(�ξi)

XZn(�ηi)XZn(�ηj ) = XZn(�ηj )XZn(�ηi)

XZn(�ξi)XZn(�ηi) = ωXZn(�ηi)XZn(�ξi)

XZn(�ξi)XZn(�ηj ) = XZn(�ηj )XZn(�ξi),

which mean that �ξ1, . . . , �ξn and �η1, . . . , �ηn satisfy equation (4). It is easy to check that |ψ〉 is
an eigenvector of XZn(�ξ1), . . . , XZn(�ξn); thus we can write |ψ〉 = |ψ(�0)〉 ∈ Qmin(�0) for some
Qmin(�0).

Consequently, we can construct an encoding operator Ue ∈ Mg(S) such that Ue = Uc.
�

From corollary 1 and lemma 4, we have the following theorem.

Theorem 1. For a given stabilizer S,Mg(S) = Mcl(S).
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3.2. Classification of encoding operators

In this section, we show the correspondence between Bell states and Bell states encoded by
encoding operators (lemma 5, corollary 2 and corollary 3). Then we show the output state
of our EDPs is always a probabilistic mixture of Bell states if the input state of protocols
is a probabilistic mixture of Bell states (theorem 2). Then, we classify encoding operators
into equivalence classes such that EDPs constructed from encoding operators in the same
equivalence class have the same performance when the input of EDPs are the probabilistic
mixture of Bell states (definition 13, and theorems 3, 4).

Lemma 5. The Bell state |βk(�0)〉 with ancilla qubits |�e〉A ⊗ |�e〉B , i.e.,

|βk(�0), �e〉 = 1√
pk

∑
�v∈Zk

p

|�e〉A ⊗ |�v〉A ⊗ |�e〉B ⊗ |�v〉B,

is mapped by Ue ⊗ Ue to

|φ(�e)〉 = 1√
pk

∑
�u∈�e×Zk

p

X̃
n

(�u)|ψ(�0)〉 ⊗ X̃(�u)|ψ(�0)〉, (22)

where X̃
n

(�u) is the complex conjugated matrix of X̃(�u), and �e × Zk
p is the subset

{(e1, . . . , en−k, x1, . . . , xk) | xi ∈ Zp} of Zn
p.

Proof. It is obvious from equation (11) in the definition of the encoding operator Ue. �

Corollary 2. A Bell state

Ipk ⊗ Xk(��)Zk( �m)|βk(�0)〉 (23)

with ancilla qubits |�e〉A ⊗ |�e〉B , i.e.,

|βk(��, �m), �e〉 = 1√
pk

∑
�v∈Zk

p

|�e〉A ⊗ |�v〉A ⊗ |�e〉B ⊗ Xk(��)Zk( �m)|�v〉B, (24)

is mapped by Ue ⊗ Ue to

Ipn ⊗ XZn(��G + �mH)|φ(�e)〉, (25)

multiplied by a scalar of unit absolute value, where the matrices G and H are

G =




�ηn−k+1

...

�ηn


 , H =




�ξn−k+1

...

�ξn


 .

Proof. Let

��′ = (0, . . . , 0, �1, . . . , �k) ∈ Zn
p (26)

�m′ = (0, . . . , 0,m1, . . . , mk) ∈ Zn
p. (27)

From equations (12) and (13),

UeXn(��′)Zn( �m′)U ∗
e = X̃n(��′)̃Zn( �m′).
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Thus, a state in equation (24) is mapped by Ue ⊗ Ue to

(Ue ⊗ Ue)|βk(��, �m), �e〉 = (Ue ⊗ Ue)(Ipn ⊗ Xn(��′)Zn( �m′))|βk(�0), �e〉
= (Ue ⊗ Ue)(Ipn ⊗ Xn(��′)Zn( �m′))(Ue

∗ ⊗ U ∗
e )(Ue ⊗ Ue)|βk(�0), �e〉

= Ipn ⊗ X̃n(��′)̃Zn( �m′)|φ(�e)〉
(a)� Ipn ⊗ XZn(��G)XZn( �mH)|φ(�e)〉
� Ipn ⊗ XZn(��G + �mH)|φ(�e)〉,

where � denotes that one vector is equal to another vector multiplied by a scalar of unit
absolute value. Note that (a) follows from equations (1), (9) and (10). �

Corollary 3. The state

Ipn ⊗ XZn(��G + �mH)|φ(�e)〉
is mapped by Ue

∗ ⊗ U ∗
e to

|βk(��, �m), �e〉 = 1√
pk

∑
�v∈Zk

p

|�e〉A ⊗ |�v〉A ⊗ |�e〉B ⊗ Xk(��)Zk( �m)|�v〉B

multiplied by a scalar of unit absolute value, i.e., |βk( �w)〉 with ancilla qudits |�e〉A ⊗ |�e〉B ,
where �w = (�1, . . . , �k | m1, . . . , mk).

Definition 12. For a vector �s = (s1, . . . , sn−k), we define the set D(�s) by

D(�s) = {�t ∈ Z2n
p

∣∣ 〈�ξi,�t〉 = si

}
.

Lemma 6. When we apply steps (i)–(v) of our distillation protocol to the state |βn(�t)〉 and
Alice and Bob do not abort the protocol in step (ii), the resulting quantum state is

Ipk ⊗ XZn(f (�t))|φ(�a)〉,
where f (·) is the mapping from Z2n

p to C⊥ and depends on the error correction process in step

(v). Specifically, f (·) is defined as follows. Let �t ′ be the most likely error in D(�b − �a). The
mapping f (·) is defined as

f : D(�b − �a) � �x �→ �x − �t ′ ∈ C⊥ (28)

for each D(�b − �a). Note that ∪�s∈Zn−k
p

D(�s) = Z2n
p .

Proof. After steps (i) and (ii), the state becomes

P
(�a) ⊗ P(�b)|βn(�t)〉 = Ipk ⊗ XZn(�t)|φ(�a)〉 ∈ Q
(�a) ⊗ Q(�b),

where P
(�a) and P(�b) represent the projection on to Q
(�a) and Q(�b), respectively. In step
(v), Bob decides the most likely error �t ′ ∈ D(�b − �a) and applies M = XZn(−�t ′). Then the
state becomes

Ipk ⊗ XZn(�t − �t ′)|φ(�a)〉 = Ipk ⊗ XZn(f (�t))|φ(�a)〉 ∈ Q
(�a) ⊗ Q(�a).

The condition MQ(�b) = Q(�a) implies �t − �t ′ ∈ C⊥. �

Remark 3. The mapping f (·) does not depend on the choice of a basis {�ξ1, . . . , �ξn−k} of C or
the joint eigenspace Q(�0). Since there exists one-to-one correspondence between D(�s) and
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a coset of Z2n
p

/
C⊥, the mapping f (·) is defined only by a representative �t ′ of each coset of

Z2n
p

/
C⊥ in equation (28).

Lemma 7. When we apply step (i)–(vii) of our distillation protocol to the state |βn(�t)〉 and
Alice and Bob do not abort the protocol in step (ii), the resulting quantum state is

|βk( �w)〉 = |βk(g ◦ f (�t))〉,
where the mapping g is the mapping from C⊥ to Z2k

p , more precisely

g : C⊥ � ��G + �mH + �v �→ �w = (�1, . . . , �k | m1, . . . , mk) ∈ Z2k
p ∀�v ∈ C. (29)

Proof. From lemma 6, after steps (i)–(v) the resulting quantum state is

Ipk ⊗ XZn(f (�t))|φ(�a)〉,
with f (�t) ∈ C⊥. Since �ξ1, . . . , �ξn, �ηn−k+1, . . . , �ηn form a basis of C⊥ and �ξ1, . . . , �ξn−k form a
basis of C, f (�t) can be written as a linear combination

f (�t) =
k∑

i=1

�i �ηn−k+i + mi
�ξn−k+i + �v, (30)

where �v ∈ C. Since |φ(�a)〉 is a joint eigenvector of S,

Ipk ⊗ XZn(f (�t))|φ(�a)〉 = Ipn ⊗ XZn(��G + �mH + �v)|φ(�a)〉
� Ipn ⊗ XZn(��G + �mH)|φ(�a)〉.

By corollary 3, after step (vi) and (vii) the quantum state becomes |βk( �w)〉 = |βk(g ◦ f (�t))〉,
where �w = (�1, . . . , �k | m1, . . . , mk). �

Theorem 2. When the input to our distillation protocol is a probabilistic mixture of Bell states
|βn(�t)〉 for �t ∈ Z2n

p , i.e.,

ρin =
∑
�t∈Z2n

p

Pin(�t)|βn(�t)〉〈βn(�t)| (31)

and the difference of Alice and Bobs’ measurement result is �b − �a ∈ T , then the output from
our distillation protocol is also a probabilistic mixture of Bell states |βk( �w)〉 for �w ∈ Z2k

p , i.e.,

ρout =
∑
�w∈Z2k

p

Pout( �w)|βk( �w)〉〈βk( �w)|,

where Pout( �w) is given by

Pout( �w) =
∑

�t∈D(�b−�a):g◦f (�t)=�w
P ′

in(�t), (32)

and P ′
in(�t) is normalized as

P ′
in(�t) = Pin(�t)∑

�t∈D(�b−�a) Pin(�t)
.

Proof. After steps (1)–(4) of our distillation protocol, from the linearity of the measurement
and the error correction, the input state ρin becomes

ρ ′ =
∑

�t∈D(�b−�a)

P ′
in(�t)(Ipk ⊗ XZn(f (�t))|φ(�a)〉〈φ(�a)|Ipk ⊗ XZn(f (�t))∗).



Improvement of stabilizer-based entanglement distillation protocols by encoding operators 4285

After applying the inverse of the encoding operator, the state ρ ′ becomes

ρout =
∑

�t∈D(�b−�a)

P ′
in(�t)|βk(g ◦ f (�t))〉〈βk(g ◦ f (�t))| (33)

=
∑
�w∈Z2k

p

Pout( �w)|βk( �w)〉〈βk( �w)|, (34)

where Pout( �w) is given by

Pout( �w) =
∑

�t∈D(�b−�a):g◦f (�t)=�w
P ′

in(�t).
�

When the input of EDPs are the probabilistic mixture of Bell states, the performance of
the distillation protocol only depends on the coefficients Pout( �w) of the output of the protocol.
Hereafter, we fix the stabilizer S and the error correction process f (·).
Definition 13. For two stabilizer-based EDPs constructed from encoding operators Ue and Ve,
respectively, let the mapping gU be determined by Ue in equation (29) and gV be determined
by Ve in equation (29). If gU(·) = gV (·), then we define two encoding operators Ue and Ve

are similar and denote it by Ue ∼ Ve.

Theorem 3. For two stabilizer-based EDPs constructed from encoding operators Ue and Ve

respectively, let

ρout,Ue
=

∑
�w∈Z2k

p

Pout,Ue
( �w)|βk( �w)〉〈βk( �w)|

and

ρout,Ve
=

∑
�w∈Z2k

p

Pout,Ve
( �w)|βk( �w)〉〈βk( �w)|

be output states of each protocols when inputs of each protocol are equation (31). If Ue ∼ Ve,
then we have

Pout,Ue
( �w) = Pout,Ve

( �w) ∀ �w ∈ Z2k
p , (35)

i.e., performances of two protocols are the same.

Proof. From equation (32) and the fact that gU(·) = gV (·), for any �w ∈ Z2k
p

Pout,Ue
( �w) =

∑
�t∈D(�b−�a):gU ◦f (�t)=�w

P ′
in(�t)

=
∑

�t∈D(�b−�a):gV ◦f (�t)=�w
P ′

in(�t) = Pout,Ve
( �w).

�

Theorem 4. If equation (35) holds for any input state of the form in equation (31), then
Ue ∼ Ve.

Proof. We prove the contraposition of this statement, i.e., if Ue �∼ Ve, then equation (35)
does not hold for some input states. Since gU(·) �= gV (·), there exists �u ∈ C⊥ such that
gU(�u) �= gV (�u). Consider the following input state. Let

Pin(�t) =




1∣∣{�s ∈ Z2n
p

∣∣ f (�s) = �u}∣∣ if f (�t) = �u

0 if f (�t) �= �u
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Then we have

Pout,Ue
( �w) =

{
1 if �w = gU(�u)

0 if �w �= gU(�u),
Pout,Ve

( �w) =
{

1 if �w = gV (�u)

0 if �w �= gV (�u),

and equation (35) does not hold. �

3.3. Enumeration of equivalence classes of encoding operators

Classify Mg(S) into equivalence classes by ∼, and denote the representative set of the
equivalence classes by M̂g(S). In this section, we show how to enumerate all elements of
M̂g(S) in theorem 5.

Lemma 8. Let two encoding operators Ue and Ve be constructed from {�ξn−k+1, . . . , �ξn,
�ηn−k+1, . . . , �ηn} and {�ξ ′

n−k+1, . . . ,
�ξ ′
n, �η′

n−k+1, . . . , �η′
n} respectively and the other parameters

(a) θx(·), (b) �η1, . . . , �ηn−k and (c) Qmin(�0) be the same. Further assume that �ξi ≡ �ξ ′
i (mod C)

for all n − k + 1 � i � n and �ηi ≡ �η′
i (mod C) for all n − k + 1 � i � n. Then Ue ∼ Ve.

Proof. Let gU ,GU , and HU be determined by Ue in equation (29), and gV ,GV and HV be
determined by Ve in equation (29). For any vector �u ∈ C⊥, we have

�u = ��GU + �mHU + �v = ��GV + �mHV + �v′ ∃�v, �v′ ∈ C.

Thus, we have

gU(�u) = gV (�u) ∀�u ∈ C⊥.

and Ue ∼ Ve. �

Lemma 9. Let two encoding operators Ue and Ve be constructed from {�ξn−k+1, . . . , �ξn,
�ηn−k+1, . . . , �ηn} and {�ξ ′

n−k+1, . . . ,
�ξ ′
n, �η′

n−k+1, . . . , �η′
n} respectively and the other parameters

(a). θx(·), (b). �η1, . . . , �ηn−k and (c). Qmin(�0) are the same. If gU(·) = gV (·), i.e., Ue ∼ Ve,
then �ξi ≡ �ξ ′

i (mod C) for all n− k + 1 � i � n and �ηi ≡ �η′
i (mod C) for all n− k + 1 � i � n.

Proof. For �u ∈ C⊥ such that

gU(�u) = gV (�u) = ( �f i |�0) ∈ Z2k
p ,

from equation (29), we have

�u = �ξi + �v = �ξ ′
i + �v′ ∃�v, �v′ ∈ C.

Thus, we have

�ξi − �ξ ′
i = �v − �v′ ∈ C,

which means �ξi ≡ �ξ ′
i (mod C) for n − k + 1 � i � n. Similarly, for �u ∈ C⊥ such that

gU(�u) = gV (�u) = (�0| �f i) ∈ Z2k
p ,

from equation (29), we have

�u = �ηi + �v = �η′
i + �v′ ∃�v, �v′ ∈ C.

Thus, we have

�ηi − �η′
i = �v − �v′ ∈ C,

which means �ηi ≡ �η′
i (mod C) for n − k + 1 � i � n. �
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Definition 14. Let �x + C and �y + C be elements of the coset C⊥/C. Define a symplectic inner
product of �x + C and �y + C as

〈�x + C, �y + C〉 = 〈�x, �y〉. (36)

Note that this inner product does not depend on choices of a representative �x of �x + C or �y
of �y + C.

Lemma 10. The linear space C⊥/C is a 2k-dimensional symplectic space with respect to the
symplectic inner product in equation (36), and {�ξn−k+1 +C, . . . , �ξn +C, �ηn−k+1 +C, . . . , �ηn +C}
form a hyperbolic basis of C⊥/C.

Proof. It is easy to check that {�ξn−k+1 + C, . . . , �ξn + C, �ηn−k+1 + C, . . . , �ηn + C} form a basis
of C⊥/C. From equations (4), we have

〈�ξi + C, �ηj + C〉 = δij , 〈�ξi + C, �ξj + C〉 = 0, 〈�ηi + C, �ηj + C〉 = 0

for i, j ∈ {n − k + 1, . . . , n}. �

As a consequence of lemmas 8 and 9, we have the following theorem.

Theorem 5. There is one-to-one correspondence between elements of M̂g(S) and choices of
hyperbolic bases of C⊥/C with respect to the inner product in equation (36). Specifically,
if two encoding operators Ue and Ve are different only by (a) θx(·), (b) �η1, . . . , �ηn−k , or (c)
Qmin(�0), then Ue ∼ Ve. Two encoding operators Ue and Ve are Ue ∼ Ve if and only if
�ξi ≡ �ξ ′

i (mod C) for all n− k + 1 � i � n and �ηi ≡ �η′
i (mod C) for all n− k + 1 � i � n, i.e.,

two hyperbolic bases {�ξn−k+1+C, . . . , �ξn+C �ηn−k+1+C, . . . , �ηn+C} and {�ξ ′
n−k+1+C, . . . , �ξ ′

n+C

�η′
n−k+1 + C, . . . , �η′

n + C} of C⊥/C are equal (lemmas 8 and 9).

Remark 4. When the input of the protocol is a probabilistic mixture of Bell states, we can
find the best stabilizer-based EDP as follows. For a given parameter n and k, find appropriate
values for the following parameters.

(i) a stabilizer S: a self-orthogonal subspace C ⊂ Z2n
p .

(ii) decision rule whether or not to abort the protocol in step (iv): a set T ⊂ Zn−k
p .

(iii) error correction process: mapping f (·) from Z2n
p to C⊥.

(iv) an equivalence class of encoding operator: a hyperbolic basis of C⊥/C.

Remark 3 and theorem 5 significantly reduce the number of candidates of good EDPs.
Indeed, for a given parameter n and k, we enumerate (n − k)-dimensional self-orthogonal
subspaces C (enumerating stabilizers S) and all hyperbolic bases of C⊥/C for each C
(enumerating the equivalence classes of encoding operators), instead of all hyperbolic bases
of Z2n

p (enumerating stabilizers S and all encoding operators). The number of all hyperbolic
bases of Z2n

p is equal to the cardinality of the set of symplectic mappings on Z2n
p , i.e.,

|Sp2n(Zp)| = pn2 ∏n
i=1(p

2i−1) [22, theorem 3.1.2]. While, the number of (n−k)-dimensional
self-orthogonal subspace of Z2n

p is
∏n−k−1

i=0 (p2n−i − pi)/(pn−k − pi) (see remark 5), and the

number of all hyperbolic bases of C⊥/C is equal to |Sp2k(Zp)| = pk2 ∏k
i=1(p

2i − 1). Thus
the number of candidates of EDPs is reduced by 1/{pn2−k2 ∏n−k

i=1 (pi − 1)}. For example, the
number of candidates of EDPs is reduced by 1/12288 when n = 4, k = 2 and p = 2. Note
that the number of permutation-based EDPs [7] for a given parameter n, k and p is also same
as the number of all hyperbolic bases of Z2n

p .
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Figure 1. Comparison of the performance between the proposed protocol and the protocol
originally proposed in [20].
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Figure 2. Comparison of the performance between the proposed protocol and the QPA protocol.

Remark 5. The number of (n−k)-dimensional self-orthogonal subspace of Z2n
p is the number

of n − k mutually orthonormal vectors
∏n−k−1

i=0 (p2n−i − pi) divided by the number of bases
of the (n − k)-dimensional self-orthogonal subspace

∏n−k−1
i=0 (pn−k − pi).

4. EDP with good performance

We can improve the performance of the protocol proposed in [20] by choosing an optimal
encoding operator. The improved protocol has the best performance over the range of fidelity
greater than 0.6 for a parameter n = 4, k = 2, p = 2 and T = {�0}. Note that there is no
choice of error correction process when T = {�0}. We calculated the performance by using
the protocol appropriate times iteratively followed by the hashing protocol. The performance
is plotted in figure 1 and is compared to the performance of the protocol in [20]. The proposed
protocol is also compared to the performance of the QPA protocol in figure 2, and has a better
performance than the QPA protocol over the wide range of fidelity. We remark that the QPA
protocol has the best performance among EDPs constructed from [[2, 1]] stabilizer codes.

The proposed protocol is constructed from a stabilizer code with a stabilizer

S = {X ⊗ X ⊗ X ⊗ X,Z ⊗ Z ⊗ Z ⊗ Z}.
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The encoding operator is constructed as follows. The vector representation of the stabilizer is

�ξ1 = (1111|0000), �ξ2 = (0000|1111).

Then we choose �ξ3, �ξ4 and �η1, . . . , �η4 to be

�ξ3 = (1100|0000), �ξ4 = (1010|0000),

�η1 = (0000|1110), �η2 = (1110|0000),

�η3 = (0000|1010), �η4 = (1010|1100).

We choose

X̃4( �f 1) = Z ⊗ Z ⊗ Z ⊗ I2 X̃4( �f 2) = X ⊗ X ⊗ X ⊗ I2

X̃4( �f 3) = Z ⊗ I2 ⊗ Z ⊗ I2 X̃4( �f 4) = iXZ ⊗ Z ⊗ X ⊗ I2

and

Z̃4( �f 1) = X ⊗ X ⊗ X ⊗ X Z̃4( �f 2) = Z ⊗ Z ⊗ Z ⊗ Z

Z̃4( �f 3) = X ⊗ X ⊗ I2 ⊗ I2 Z̃4( �f 4) = X ⊗ I2 ⊗ X ⊗ I2.

We choose one of joint eigenspaces Q(�0) spanned by

{|0000〉 + |1111〉, |0011〉 + |1100〉, |1001〉 + |0110〉, |0101〉 + |1010〉},
and choose Qmin(�0) as

Qmin(�0) = {|0000〉 + |1111〉 + |0011〉 + |1100〉 + |1001〉 + |0110〉 + |0101〉 + |1010〉}.

5. Conclusion

In this paper, we showed a method for enumerating all encoding operators in the Clifford group
for a given stabilizer code systematically. We further classified those encoding operators
into equivalence classes such that EDPs constructed from encoding operators in the same
equivalence class have the same performance when the input of EDPs is a probabilistic
mixture of Bell states. By this classification, we can search EDPs with good performances
efficiently. As a result, we found the best EDP among EDPs constructed from [[4, 2]] stabilizer
codes. Although in this paper we employed T = {�0}, i.e., we abort the protocol if Alice and
Bobs’ measurement outcomes disagree, performances of stabilizer EDPs may be improved by
employing T �= {�0}, i.e., we decide whether to abort or perform the error correction according
to the difference of Alice and Bobs’ measurement outcome. Exploring the potential of T �= {�0}
is a future research agenda.

For a general two-way EDP, the distillable entanglement is upper bounded by the relative
entropy of entanglement [24, 26]. We do not know what rate is achievable by using an optimal
stabilizer code and an optimal encoding operator. It is also not clear how much performance
is improved by using an optimal encoding operator for a fixed stabilizer. Evaluating the
performance analytically is also a future research agenda.
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